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Abstract A modification of the classical /~ngstr6m method for the determination of the thermal 
conductivity of solids is described. This modification is not necessarily desirable although at first glance 
it may appear to be so. A solution for the problem posed is obtained using a boundary layer type 
approximation to the complicated heat conduction problem. Results obtained for copper demonstrate 

the adequacy of the approximation. 

NOMENCLATURE 
A, subscript denoting insulation, also 

cross-sectional area of specimen; 
B, subscript denoting specimen, also am- 

plitude of  Fourier component of 
temperature wave; 

c, specific heat; 
(7, amplitude of  Fourier component of  

temperature wave; 
h, surface heat-transfer coefficient; 
k, thermal conductivity; 
L, distance between measuring stations; 
P, perimeter of  specimen; 
t, temperature, 
T, period of temperature oscillation; 
x, length measure in specimen; 
y, length measure in insulation normal to 

surface of  specimen; 
a, thermal diffusivity; 
/3 -- 7, phase shift; 
~-, time; 
oJ, frequency of  temperature oscillation; 
8, temperature difference. 

INTRODUCTION 
IN 1860, Angstr/Sm [1] published the results of  a 
study of  the thermal conductivity of  solids as 
determined by an unsteady technique developed 
specifically for that purpose. Subsequently, 
many investigations have employed Angstr6m's 
method in the determination of thermal proper- 
ties. Three of the most recent papers [2, 3, 4] on 
the subject are listed at the end of  this paper. 

Briefly, Angstr6m's method consists of the 
following: one end of a bar of the material 
whose thermal conductivity is desired, is sub- 
jected to alternate heating and cooling such that 
a temperature oscillation is set up in the bar. 
After the initial transients have died out, the 
temperature oscillation approaches a steady state 
such that the waveform of temperature at any 
given point along the bar reproduces ad in- 
finitum with a fundamental period equal to the 
period of the heating and cooling cycle on the 
end of  the bar. AngstriSm was able to show that 
from measurements of these waveforms at two 
different points on the bar one could determine 
the thermal diffusivity of  the solid material. 
The beauty of his method lies in the fact that 
one needs only the amplitude and phase shift of  
a single Fourier component of  the waveform at 
the two locations. The external conditions (heat- 
transfer coefficient and ambient temperature) 
are not required in the calculation as long as 
they are the same at both locations. In fact, the 
temperature of the bar is needed only to fix the 
level at which the diffusivity is measured, so that 
if thermoeouples are used whose response is 
linear with temperature, they need not be 
calibrated nor must the coefficients of  the Fourier 
components be reduced to the units of tempera- 
ture. The essential simplicity of  unsteady state 
measurements is elegantly demonstrated by this 
method since the thermal diffusivity having 
dimensions of area per unit time is simply 
related to a length squared, the fundamental 
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period of the disturbance, and a dimensionless 
parameter calculated from the measured 
wave forms. 

The modification discussed herein is that 
caused by encasing the bar of material in thermal 
insulation. This step at first glance seems desir- 
able, since then a more reproducible boundary 
condition is obtained. In the analysis, however, 
we show that the thermal properties of the 
encasing materials now influence the results. 
This conclusion is a result of the interesting fact 
that with the bar losing heat to the atmosphere, 
the heat loss from the sides is nearly in phase 
with the local temperature excursions of the bar. 
With the bar encased, the heat loss lags the 
temperature excursion of the bar by up to 90 °, 
forcing one to take into account the heat 
capacity of the insulation. The results quoted 
for copper both with the bar encased and open 
to the atmosphere can be brought into agree- 
ment with the aid of  a simple theory based on a 
boundary-layer type approximation for the 
temperature field in the insulation. 

ANALYSIS 
Consider the sketch shown in Fig. 1. The 

specimen whose thermal diffusivity is to be 
measured is denoted by B. The encasing insula- 
tion is denoted by A. For the purpose of the 
analysis, we may regard the composite structure 
as a sandwich, with two large blocks of insulation 
A placed on both sides of a thin slab B. 

If the exposed surface of a semi-infinite solid 
of thermal diffusivity a is subjected to a sinu- 
soidal temperature variation of period T, the 

A-- V -'/ ," / "/, " '" "" 

L . . . .  F+..,;..;;.;;a,x.<:+I 
~../ , . . .  /.... ,.../) 

..;. ;;<" . ...... 
/ . , , j 

I" / / . / / / /, 

Fro. I. 

amplitude of the temperature excursion at a 
depth x compared to the temperature excursion 
at the surface is given by 

0.d0o - e x p [ - . v  \/(~/aT)] 

If the insulation and the specimen are considered 
separately, the ratio of the amplitudes of the 
temperature excursions at a depth x for the same 
surface temperature variation is given by 
OxA/Ox B =exp [-- x ( X/rr/T)( ~/'a B--- X/aA)] ~/a aa B]. 
In the case considered here, the specimen was 
copper and the insulation asbestos. Using the 
values from the experiment (x -- 4 in, T --- 4 min, 
aA = 0"1 ft2/h, and aB ---- 4"5 ft2/h), we calculate 
for the ratio OxA/OxB, the value exp (--6.67), a 
number vanishingly small. This simple calcula- 
tion indicates that when the materials considered 
are placed together in the sandwich form shown 
in Fig. 1, the heat flow process in the insulation 
a short distance from the surface will be related 
only to the local temperature excursions of the 
bar and not to the surface temperature excursions 
of the insulation. 

The foregoing calculation is not sufficient 
justification for the contemplated approxima- 
tion: a moment's reflection reveals that the 
approximation really requires that the depth of 
penetration of the temperature excursions in the 
insulation normal to the encased surface of the 
specimen be small compared to the wavelength 
of the axial temperature profile in the specimen. 
In the insulation, the temperature excursions 
will have decayed to 1 per cent of their original 
value in a depth Y -  4.6 ~/(aAT/Tr),  while the 
wavelength of the temperature profile in the speci- 
men is given by X := 2 X/(TraBT). From the data 
given above, we calculate Y / X  = 0.11. 

We are thus led to consider the following set 
of differential equations: 

1 OtB OZtB P ka [8ta~ 
- Ox 2 J-2l ~ " '~,~-/y=o (1 )  aB 07- 

and 

10tA Oeta 
- (2 )  

a A -07" Oy 2 

where t s  = tB(X, ~) with tB(O, 7-) a prescribed 
periodic function, 

ta = tA(y, -r) with ta(O, T) = t s (x ,  ~). 
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The ratio P/.4 is the familiar wetted perimeter to 
cross-sectional area ratio.* The last term in 
equation (1) represents the heat flow into the 
insulation from the sides of the specimen. It will 
be noted that we have made two one-dimen- 
sional approximations, in different directions, in 
the specimen and the insulation. 

Since the temperature at any point in either 
the specimen or the insulation will be periodic 
in time, we may write the solutions to equations 
(1) and (2) as a Fourier series. Thus for equation 
(2), the well-known [5] solution is 

t a ( y , z ) =  ~ Cn 
n ~ - - O 0  

e x p { - - Y J ( ~ w a a ) - - i [ n w T - - Y J ( ~ a ) ] t  

(3) 

where the Cn are functions of x to be determined. 
From the boundary conditions on equations (1) 
and (2), we must have 

tn (x, ~) = ta (0, z) = ~ Cn exp [-- inoJz] (4) 
-oo  

so that equation (1) becomes 

d~Cn 

imo 1 + - - -  Cn 0 (5) 
as 2A k s  

The solution of equation (5), though complicated 
algebraically, is easily written down. The nature 
of the problem is better elucidated, however, by 
a different tack. Let us assume that the x values 
of interest are sufficiently large that the higher 
harmonics represented in equation (4) and (5) 
can be neglected. Then, without further loss of 
generality, the solution for the temperature field 
in the insulation can be written 

ta (y, ,) = a(x) exp [-- y V'(oJ/2aa)] 

[ cos  ~ -  + b(x )  - y ( 0  

* It is not necessary for the validity of equation (1), 
that the specimen-insulated structure to take the ge, ome~ry 
of a sandwich, if the radius of curvature of the surface of 
the specimen is small compared to the d~.'pth of penetra- 
tion in the insulation of the temperature oscillation. 

where a(x) and b(x) are functions to be de- 
termined from the solution for ts(x, ~). From 
equation (6), we find 

~tA 
~y t a + ~o CT--rj ~2~ 

so that 

) 
~ , = o  ~, ~J ~ " 

(7) 

Inserting equation (7) into equation (1) then 
gives 

k s  ff~xZ = pBCS + paCa ~ N/ ~ ] j  ~-r + 

e o)¢xA 

f P a c a ~ J ( - - 2 - ) t  tB (8) 

in which form the meaning of the various terms 
is readily apparent. 

To help interpret equation (8), we may refer 
to AngstrSms original equation, which in the 
present notation can be written, 

~2t s at s hP 
k s  -~V = pscn ~ + -~ ts  (9) 

where h is a Newtonian heat-transfer coefficient. 
Comparison of equations (8) and (9) now re- 

veals that the effect of the encasing insulation is 
to augment the heat capacity of the material A 
and to alter the form of the coefficient of tn. 
Equation (8) has the same formal solution as 
equation (9), so that the expression for the ther- 
mal diffusivity can be taken from (5). It is, 

~.4 = 2(13 - ~,) In B / C  0o) 

where L is the distance between measuring 
stations along the specimen, fl -- y and B/C are 
the phase shift and amplitude ratio of the 
temperature oscillations at the measuring 
stations. Equation (10) differs from the solution 
to equation (9), only in the presence of the 
second term in brackets in the numerator. 
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EXPERIMENT 
To check the above analysis, experiments 

were performed on an existing apparatus at 
Princeton University. This apparatus, regularly 
used as an undergraduate laboratory experi- 
ment, consists of  a ½ in dia. copper bar 3 ft long 
suitably mounted and instrumented with thermo- 
couples at 4 in intervals along its length. One 
end of the copper bar is subjected to alternate 
heating and cooling from a laboratory burner 
and a water spray controlled by a motor  and 
cam arrangement. The period of heating and 
cooling is about 4 rain and the end of the bar 
undergoes a temperature excursion from 50°F 
to 350°F approximately. 

Experiments were performed both with and 
without insulation. The insulation used con- 
sisted of  a layer, about ½ in thick, of  tightly 
wrapped asbestos cord covered with about 1 in of  
corrugated asbestos pipe insulation. The esti- 
mated thermal properties of  the insulation were 
aA --  0" 1 ft2/h and kA = O" 16 Btu/h ft degF. 

Temperature profiles at two locations on the 
specimen were recorded with a Brown strip 
chart recorder. The amplitude and phase of the 
fundamental component of  the temperature 
profile were determined by application of the 
12-ordinate method of Fourier analysis (see [6] 
for example). 

The results can be summarized as follows: 

1. No insulation, aB -= 4"53 ft2/h. 

2. With insulation, uncorrected, an = 3.56 ft2/h. 

3. With insulation, corrected, aB = 4"10 ft2/h. 

4. Handbook value [7], an = 4"35 ft2/h. 

CONCLUSIONS 
Perhaps the most meaningful conclusion to be 

drawn from the above is a plea for caution in the 
execution of such experiments. From equation 
(10), we learn that the combination of parameters 

pACA P ~ a A  

pBCB A ~ 

should be small compared to unity ifAngstriim's 
method is to be employed with impunity. 
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R~am6---On d6crit une modification de la m6thode classique d'Angstr6m pour la d6termination de la 
conductivit6 thermique de solides. Cette modification n'est pas n6cessairement d6sirable quoiqu'~ 
premii~re vue il puisse paraJtre qu'elle le soit. Une solution du probl~me pos6 est obtenue en utilisant 
une approximation du type de la couche limite au probl~me compliqu6 de conduction de la chaleur. 

Les r6sultats obtenus pour le cuivre d6montre la justesse de l'approximation. 

Z u s a m m ~ - - E i n e  Modifikation der ldassischen /lmgstrOm-Methode zur Besfimmung der 
Warmeleitffflaigkeit fester KOrper wird beschrieben. Diese Modifikation ist nicht immer empfeh ens- 
wert, obwohl ein erster Anschein fiir sie spricht. Eine LOsung des komplizierten Wirmeleitungs- 
problems erhalt man mit einer Grenzschichtn~herung. Ffir Kupfer erhaltene Ergebnisse zeigen die 

Giiltigkeit der Niflaerung. 
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AHHOTa~- -OnHc~BaeTC~ MO~H~HRa~nA H~accnqecRoro MeTO~a AHrcTpe~a ~ a  onpe~e~e- 
HHE[ H O a ~ h H e H T a  Ten~onpoBo~HocT~ T B e p ~ x  Te~. 9Ta M 0 h n ~ K a I I ~  He Bcerha ~e~aTe~-  
~ua,  XOTFt C ~epnoro na r ~naa  MOmeT noKaaaTbcff o6pavHoe. PemeHne nOCTaB~eItHOl~ aa~aqn 
noayqaeM nyTiiM npnMeHerm~ npnS~H~enn~  norpaHnqHoro c~o~t i~ C~tOmHOfl 3a~aqe Ten~o- 
npoao~nocTn. Ho:ty~eHHUe peay~bTaTU a~fl Mean nouaauBa~oT a~eraaTnOCT~ ~pHS~meHnu .  


